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Abstract:  

 
An Agent-Based Model comprising a fish stock, a fishing fleet and a fish market is used to 
investigate the combined effects of environmental and market variability on the structure of a 
fishery. Over 15-year simulations, agents make daily fishing decisions and annual entry, exit, 

and investment decisions based on the fishery’s past economic outcomes and their individual risk 
preferences and opportunity costs (e.g., an alternative source of income). Environmental 
variability is simulated through fishing success variability while market variability is simulated 
through changes in the elasticity of the demand curve (i.e., the responsiveness of market prices to 

changes in daily landings). Our findings indicate that changes in variability lead to changes in 
economic and biological conditions of the fishery by influencing the composition of risk 
preferences within the fleet. Counter to expectations, market stability did not dampen the 
negative impacts of environmental variability but rather stimulated over-investment and 

increased harvesting by a small number of risk-seeking fishers. Results from this research 
suggest that climate-driven increases in fisheries variability, coupled with increases in market 
integration that act to reduce local price signals, may lead to inefficient investments and reduced 
fishery resources. 
 
Keywords: Agent-Based Model; fisheries; decision-making; environmental variability; fishing 
industry organization 
 
 

Introduction 

 
Variability in the abundance of fish stocks and fisheries production results from shifting 

environmental conditions (Jacobson et al., 2001; Lehodey et al., 2006) and may be amplified by 

exploitation (Anderson et al., 2008; Hsieh et al., 2006) and changes in age and spatial structure 
of the spawning stock (Berkeley et al., 2004; Ottersen et al., 2006). Large inter-annual changes in 
production can reduce access to fishery resources and have detrimental impacts on fishers and 
their communities (Badjeck et al., 2010; Caviedes and Fik, 1992; Sumaila et al., 2011). 

Diversification of catch and production across stocks, species, or fishing grounds has been 
shown to stabilize incomes and reduce exposure to natural variability and risk (Anderson et al., 
2017; Cline et al., 2017; Kasperski and Holland, 2013; Schindler et al., 2010). Still, climate 
change and continued fishing pressure are expected to increase fisheries’ variability globally 
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(Brander, 2010, 2007; Perry et al., 2010) and many communities may have limited alternatives 
for diversification as over 90% of assessed stocks are currently considered fully- or overfished 
(Food and Agriculture Organization, 2018). 

The Food and Agriculture Organization estimates that over 40 million people rely on 
wild capture fisheries as sources of income and employment (Food and Agriculture 
Organization, 2018). If considering ancillary industries and indirect employment, the livelihoods 
of hundreds of millions depend on this sector (Teh and Sumaila, 2013). In addition to income, 

jobs in capture fisheries have also been argued to serve important sociocultural (Weeratunge et 
al., 2014), gender (Weeratunge et al., 2010; Williams, 2008), and development (Béné et al., 
2010) functions. While it is obvious that human communities who depend on fishery resources 
for income and employment are affected by variability in species’ temporal and spatial 

abundances, mechanistic pathways and magnitudes of response are less obvious. Additionally, 
the economic effects of fisheries’ variability are modulated through prices, suggesting market 
structure may be consequential when considering the relationship between natural variability, 
income, and employment. 

Bioeconomic analyses have considered fisheries variability in examining optimal 
investment, harvest, and management strategies, finding increased variability generally reduces 
optimal investment and harvest levels (Charles, 1983; Hannesson, 1993; Poudel et al., 2013), 
though optimal policies may depend critically on costs associated with changes in fleet size or 

capacity (Singh et al., 2006). There are few studies considering the effect of resource variability 
on individual investment decisions and fleet development in commercial fisheries (Nøstbakken 
et al., 2011). The impacts of uncertainty on investment and firm behavior have been studied in 
more general settings (e.g., Dixit and Pindyck, 1994) and can inform expectations in commercial 
fisheries (e.g., hysteresis, or the failure of an effect to reverse when its underlying cause reverses, 
commonly observed in firm entry and exit behavior, Dixit, 1989; Dixit and Pindyck, 1994). 
However, the influence of variability on individual behavior and industry development in 
commercial fisheries may be unique as fluctuations in fish abundance and availability are often 
large, short-lived, and heterogeneously distributed across fishery participants.  

 Agent-Based Models (ABMs), also referred to as Individual-Based Models (IBMs), 
enable researchers to simulate complex systems and evaluate emergent phenomena resulting 
from the aggregate behavior of individual agents (Bonabeau, 2002; Holland and Miller, 1991). 
Agents may follow decision-making rules, interact with one another, and exhibit heterogeneity in 

individual traits, hence enabling ABMs to explicitly simulate population-level variability as a 
consequence of inter-individual variability. ABMs are particularly useful when individual 
behavior is non-linear or exhibits thresholds, is characterized by temporal correlation, or is 
subject to stochastic processes (Bonabeau, 2002). This modeling approach has been applied in 

fisheries to understand fleet dynamics and fishing behavior (Cabral et al., 2010; Millischer and 
Gascuel, 2006; Soulié and Thébaud, 2006; van Putten et al., 2012), explore decision-making in 
response to regulations or management alternatives (Bailey et al., 2019; Bellanger et al., 2018; 
Gao and Hailu, 2011; Little et al., 2009; Soulié and Thébaud, 2006), and analyze emergent 



  

 

  

 

economic and ecological outcomes under a variety of agent decision rules (BenDor et al., 2009; 
Wilson et al., 2007).  

We utilize an ABM framework to better understand the effects of environmental and 
market variability on fisher entry, exit, and investment behavior. In the model, individual agents 
make daily fishing decisions and annual entry, exit, and investment decisions by comparing 
expectations regarding fishing profits against individual opportunity costs and risk preferences. 
Simulations using combinations of fishing success variability (proxy for environmental 

variability) and fish price elasticity (proxy for market variability) were run, and, the state of the 
fishery after fifteen years of operation was quantified through a range of metrics (e.g., number of 
active fishers, investment levels, fish biomass, fishing profits). 

 

 

 

Methods 

 

General approach 

 

An Agent-Based Model (ABM) designed to capture the salient characteristics of a system 
comprising a fish stock, a fishing fleet and a fish market is described. The overarching goal of 

this study is to investigate the combined impact of environmental and market variability on 
fishers’ decision-making and its consequences. Due to the paucity of information available for 
the calibration of the model, each of its elements is represented in its simplest form. The fish 
stock is represented by a biomass which can be removed through harvesting and is regenerated 
each year to simulate annual recruitment events. One hundred fishers are simulated and have the 
opportunity, once a year, to enter or exit the fishery and to invest into a larger vessel. The 
decision-making process is based upon the economic outcomes of fishing operations (past profits 
and their variance) while accounting for individual behavioral traits (risk preferences and 
alternative income sources). Profits depend upon fishing success (which variability is modulated 

to simulate different levels of environmental variability), vessel capacity (on which depend catch 
and operational costs), and, fish price (which elasticity is modulated to simulate different levels 
of market variability). 
Dynamics are simulated for 15 years with a daily time-step; for simplicity, twelve 30-days 

months are simulated for each year. A set of key metrics (e.g., fish biomass, number of fishers, 
investments, profits) computed at the end of simulations are stored for subsequent analysis. All 
computations were done in the R statistical computing environment, version 3.5.0 (R Core Team, 
2019). 

 

 

 

 



  

 

  

 

Model description 

 
The structure of the model is described in the following sections. The sequence of daily 
computations is further summarized in Figure 1 and model parameters are given in Table 1. 
 
Fish stock 

The fish stock is represented by a fish biomass (B, t) which may be harvested every day by each 

fisher. On January 1st, fish biomass is reset to an initial value (Bi, table 1) to simulate annual 
recruitment. Fish biomass is set as to be non-limiting (i.e., fishers never deplete the stock).  
 
Individuals 

Each individual is characterized by 8 variables and 3 constants (η, ρ and ω, which are set prior to 
running a simulation), as described below. 

- Fisher (status, binary): initially set to 0, becomes 1 if the individual enters the fishery, reverts 
to 0 if the individual exits the fishery. 

- Invs (accumulated investments, $): initially set to 0. Every time a fisher decides to invest, 
accumulated investments are incremented by a constant investment cost (Inv, $): 

 
���� = ���� + ���      (1) 

 
Accumulated investments are nullified if the individual decides to leave the fishery. 

- InvTime (time of last investment, days): If a fisher invests, it is updated as being equal to the 
number of days elapsed since the beginning of the simulation, otherwise it remains unchanged. 

- DInvs (depreciated investments, $): Takes part in the decision to leave the fishery. When a 
fisher decides to invest, depreciated investments are updated while accounting for the 
depreciation of past investments: 
 

����� = �	
��

(���.��)
���������

����
+ ���    (2) 

 
, where t is the number of days elapsed since the beginning of the simulation, Ddep is the 
duration (one year) over which a 5% (0.05) rate of depreciation is assumed. Depreciated 
investments are nullified if the individual decides to leave the fishery. 

- VC (vessel capacity, kg): Controls both landings achievable in a day and operational costs. 
Vessel capacity is a linear function of accumulated investments: 
 

 ! = ���� ×  !�# +  !$�%    (3) 

 
, where VCsl and VCint are slope and intercept parameters respectively. 

- Π (accumulated profits, $): sum of past profits and new profits (π, $), updated daily. 



  

 

  

 

- Catch (kg): amount of fish caught on a given fishing day. 
- Trip (status, binary): initially set to 0, set to 1 if fisher decides to go fishing on a given day. 
- η (response to variance in profits, unit-less): randomly generated from a normal distribution 

with a mean of &̅ = 0 and a standard deviation of ση. Negative values correspond to risk-

seeking individuals and positive values correspond to risk-averse individuals. 
- ρ (opportunity costs/preference toward fishing, $): randomly generated from a normal 

distribution with a mean of )̅ and a standard deviation of σρ. High values correspond to 

individuals with better alternative sources of income (e.g., a more lucrative job opportunity) 
and/or a dislike of fishing while low values correspond to individuals without better alternative 
and/or a fondness of fishing. 

- ω (belief/knowledge of other’s economic outputs, unit-less): randomly generated from a 
uniform distribution bound between 0 and ωmax. Each individual is assigned as many values as 
there are other individuals in the model and self-belief/knowledge is set to 1. Takes part in 
decision-making computations and is used to weight the economic outputs (average and 
variance of profits) from other individuals, hence controlling the relative importance of fleet-
wide profits and individual profits. 

 
Fishing operations 

In order to account for the seasonality of fishing operations, a time-varying probability of leaving 
port (Plp) is used. This probability is computed as a double logistic function of time (t, days), 
resulting in the fishery being opened only for a part of the year: 
 

*#+ = �
��,�-(��.) × (1 − �

��,�1(���))   (4) 

 

Parameters a, b, c and d control the shape of the double logistic function, where a and c control 
the speed of the opening and closing of the fishing season respectively, and, b and d control the 
timing of the opening and closing of the fishing season respectively. Every day, for each fisher 
that decides to go fishing (i.e. with a ‘Trip’ status of 1), if a random number generated from a 
uniform distribution bound between 0 and 1 is inferior to Plp, that fisher goes fishing.  
 
Daily catch (Catch, kg) is computed as a stochastic process depending on fishing success 
(success) and vessel capacity (VC). 
 

!2%3ℎ = �5336�� ×  !     (5) 

 
Fishing success is randomly generated daily for each fisher from a uniform distribution bound 
between (0.5-0.5×Svar) and (0.5+0.5×Svar), with success variability (Svar) ranging from 0 to 1 
and set constant during a simulation. An averagely successful day (i.e., success=0.5) therefore 
enables a fisher to reach half of the vessel’s capacity with fish catch. Under maximum success 



  

 

  

 

variability (Svar=1), catch ranges between 0 and VC. Through this formulation, the effect of 
variability in fishing success may be investigated without affecting average catch (and therefore 
average profits). 
 
Market 

Fish price (Price, $.kg-1) is computed at the end of the day, after the conclusion of fishing 
operations, based on total daily landings (TL, kg; i.e., the sum of individual Catch) and potential 

total landings (PTL, kg), following an isoelastic formulation: 
 

*7$36 = min (*<2=, *<$? × @ AB
CABD

(� ECF�⁄ )
)  (6) 

 
Fish price is therefore limited to a maximum price (Pmax, $.kg-1), reduces with increasing 
landings according to the Price Elasticity of Demand (PED) and reaches an average price (Pmid, 
$.kg-1) when total daily landings equal potential total landings. Potential total landings are the 
total landings expected from an average fisher population at the mid-point of the simulation (see 
Supplementary Information 1). This formulation enables testing a range of PED values – which 

control the slope of price as a function of landings and represent market variability – while 
maintaining the average price constant (i.e., at Pmid). In doing so, changes in decision-making 
caused by changes in PED are not biased by changes in average price. 
 

Profits 

Daily profits (π, $) are computed as the balance between gains from selling fish and losses from 
costs, which are proportional to the vessel’s capacity (VC) and revenue: 
 

H = !2%3ℎ × *7$36 × (1 − !I) − (!J + !<) ×  ! (7) 

 
Where Cb ($.kg-1) is the base cost rate for all vessel owners (e.g., docking fees, taxes, fishing 
license…), Cf (unit-less) is the fishing cost rate (e.g., crew salary, gas…), and, Cm ($.kg-1) is the 
maintenance cost rate (e.g., fishing gear repairs, engine maintenance…). Cf and Cm are only 
accounted for individuals that decided to go fishing on a given day (i.e., individuals with a ‘Trip’ 
status of 1). As fishing revenues and costs are proportional to vessel capacity, this form of the 
profit function implies constant marginal returns of individual investments (i.e., profits scale 
proportionately with vessel capacity under constant prices).  
 
Decision-making 

Four decision-making computations are executed in the model (Fig. 1). The decision to go 
fishing is taken daily by fishers (individuals that have entered the fishery, with a ‘Fisher’ status 
of 1) and is based on yesterday’s economic outcomes, while the three remaining decisions are 
taken on January 1st (fishery entry, fishery exit, investment) and are based on historic economic 
outcomes. Economic outcomes are cross-fleet weighted means of past profits and their variance, 



  

 

  

 

using ω (individual belief/knowledge of other’s profits) as weights. Only the economic outcomes 
of fishers are considered. 
On a given day (t), yesterday’s average profits, as perceived by individual i (characterized by its 
individual belief/knowledge of other’s profits, ωi) are: 
 

HKLM = ∑(O��P×Q�)
∑ Q�

      (8) 

 
, and the unbiased estimate of weighted variance in profits is: 
 

 27(HKLM ) = ∑ Q�(O��PEOR�M )S

∑ Q�E∑ Q�S ∑ Q�⁄      (9) 

 
The decision to go fishing is taken daily by fishers. A fishing trip is made on day t by fisher i 
when: 
 

HKLM − &T ×   27(HKLM ) > )T     (10) 

 
Yesterday’s perceived profits, their variance and the individual’s response to variance are 
compared to the individual’s opportunity costs/preference toward fishing. A risk-averse 
individual would therefore decide not to go fishing if he had sufficiently lucrative alternative 
opportunities on that day. 
 
The remaining three decision-making computations occur on January 1st and are based on past 
profits and their variance. In order to put more weight on recent economic outcomes relative to 
former ones (e.g., last year’s economic outcomes are more relevant today than those from ten 
years ago), a logistic function of time is used as a weight in a weighted mean of past economic 
outcomes. In addition, the seasonality of fishing operations (Plp, eq. 4) must be accounted for so 
that individuals consider profits generated while the fishery is open (otherwise decisions would 
be biased by negative profits while the fishery is closed). On day t, a time-dependent formulation 
of historic weights (wh) is computed as: 

 

VW = �
��,���X[ZP� �(��[\])] × *#+�

L    (11) 

 
, where _ is a sequence of integers from 1 to the current count of days (t), TDr is a rate of decay 

and Plp is evaluated for all days up to t. This formulation results in historic weights reaching 
maximum on day t, decreasing for preceding times, and reaching close to zero on day t – 5 years. 

Historic economic outcomes are computed as weighted means of past economic outcomes using 
wh as weight. On day t, historic profits, as perceived by individual i, are: 
 



  

 

  

 

`HKLa = ∑(OR�M P
� ×bc)

∑ bc
      (12) 

 

, where HKLM �
L  are past perceived profits (eq. 8), from the first day of simulation to the current day 

t. 
Similarly, historic variance in profits is: 
 

` 27(HKLM ) = ∑(def(OR�M )P� ×bc)
∑ bc

    (13) 

 
Combining historic economic outcomes, with the individual’s response to variance (η) and 
opportunity costs/preference toward fishing (ρ), a decision-making variable is computed for each 
individual i on each day t: 

 

ΔTL = hOR�a Ei�×hdef(OR�M )Ej�
�.��      (14) 

 

ΔTL corresponds to the discounted stream of expected future net benefits associated with fishing. 

The numerator of this term is equal to the individual’s historic daily profit expectation minus 
their response to historic profit variance and individual opportunity costs/fishing preferences. 
This term, which represents a daily expectation of individual net benefits associated with fishing, 
is divided by a discount rate of 5% such that (14) is equal to the discounted infinite sum of these 
benefits. This value captures the individual’s perceived net benefits from the ability to fish daily 
indefinitely into the future, adjusted for an assumed average time preference (i.e., fishing profits 
today are seen as more valuable when compared to fishing profits tomorrow).  
 
The decisions to enter the fishery and to invest are separately assessed on January 1st of each 
year as: 
 
ΔTL > ���       (15) 

 

When this inequality is true, the perceived benefits of entering the fishery or investing in 

additional fishing capital outweigh the associated costs and individual i enters the fishery and 
may, later on, invest. 

 

The decisions to enter the fishery and to invest are separated by the decision to exit the fishery 
(Fig. 1), computed as: 

 
ΔTL < �����       (16) 

 



  

 

  

 

Therefore, exit occurs when the discounted stream of future net benefits derived from fishing is 
less than the scrap value of fishing capital investments. When this inequality is true, the 
individual can gain more financially by scrapping their investment and leaving the fishery.  
 
Hence, on January 1st, the following sequence of decisions are taken (Fig. 1):  

- Fishery entry (eq. 15): Assessed only for individuals that have not yet entered the fishery 
(i.e., individuals with a ‘Fisher’ status of 0). For those deciding to enter the fishery, 
Fisher becomes 1.  

- Fishery exit (eq. 16): Assessed only for individuals that have entered the fishery (i.e., 
with a Fisher status of 1). For those deciding to leave the fishery, Fisher becomes 0, and, 
accumulated investments (Invs, eq. 1), depreciated investments (DInvs, eq. 2) and vessel 
capacity (VC, eq. 3) are nullified. 

- Investment (eq. 15): Assessed only for individuals that have entered the fishery (i.e., with 
a Fisher status of 1). For those deciding to invest, accumulated investments (Invs, eq. 1), 
depreciated investments (DInvs, eq. 2) and vessel capacity (VC, eq. 3) are updated to 
account for the additional level of investment (Inv in eqs. 1 and 2), and the time of 
investment (InvTime) is updated. 

 

Simulations and metrics of interest 

 
The objective of this study is to investigate the combined effects of environmental variability 
(represented by fishing success variability; Svar, used to control ‘success’ in eq. 5) and market 
variability (represented by the Price Elasticity of Demand; PED, which controls the slope of 
price as a function of total daily landings in eq. 6) on the dynamics of the simulated fishing fleet. 
These dynamics are captured at the end of a 15-year simulation by computing a set of metrics of 
interest (hereby referred to as ‘key metrics’) which combinedly depict a snapshot of the final 
state of the system. The key metrics are: 

- Fish biomass (tons): remaining fish biomass after the last year of fishing operations (fish 
biomass is re-initialized to 100,000 t. every year). Decreases if the fleet is larger and/or 
composed of larger vessels. 

- Number of fishers (count of individuals with a ‘Fisher’ status of 1): Indicative of the 
willingness/need of individuals to be fishers. All following key metrics are computed 
only for those individuals as to depict a snapshot of the active fleet (without being biased 
by those individuals that decided not to join the fishery and those that decided to leave it). 

- Median of η (response to variance in profits, unit-less) of fishers: lower values 

correspond to a fleet composed of more risk-seeking individuals. 
- Median of ρ (opportunity costs/preference toward fishing, $) of fishers: lower values 

correspond to a fleet composed of individuals that need/like to go fishing. 



  

 

  

 

- Interquartile range, median and sum of investments ($) of fishers: stems from the 
attractiveness of the fishery to investments, depends on the number of fishers and their 
individual investments, and, is indicative of the fleet’s size and composition (since Vessel 
Capacity is proportional to investments). 

- Interquartile range, median and sum of accumulated profits ($) of fishers: depends on the 
balance between gains and costs and is also indicative to the fleet’s size and composition. 

 

Due to the stochastic nature of the model (the series of decision-making computations may be 
viewed as a sequence of Bernoulli trials) a single model run may not provide a representative 
picture of the system’s average response. The model was therefore run 1,000 times and the 
average of key metrics was computed, for each set of parameter values. 

Prior to the analysis of the model’s response to environmental and market variability, the model 
was calibrated based on reasonable assumptions (see Supplementary Information 1), a sensitivity 
analysis through parameter perturbation was undertaken (see Supplementary Information 2), and 
the model response to the modulation of three key parameters was analyzed (see Supplementary 
Information 3). 

 

Investigating the combined effects of changes in Svar and PED 

 
The response of key metrics to concurrent changes in fishing success variability (Svar) and Price 
Elasticity of Demand (PED) was investigated. To do so, both PED and Svar were incrementally 
changed within a range of values (0.0≤Svar≤1.0 and 0.5≤PED≤1.5) each by 11 increments, and, 
each of the 121 resulting combinations of values was used in 1,000 simulations. The mean of key 
metrics was then computed for fishers at the end of the simulations.  

 

 

 

Results 

 

Combined effects of changes in Svar and PED 
 
The results of this analysis are displayed in the form of colored grids, where each grid cell 
corresponds to a combination of PED and Svar values and colors correspond to the value 
reached by the key metric of interest. Overall, the response of key metrics to changes in PED and 
Svar can be classified in three broad visual classes: (i) unidirectional gradients, where a key 
metric’s values appear to be only affected by one variable, (ii) bidirectional gradients, where a 
key metric responds monotonically to changes in both Svar and PED, and (iii) complex 
gradients, where for example, key metrics display a localized maximum (i.e., a dome) within the 
PED-Svar domain. 



  

 

  

 

 
Unidirectional gradients 

Unidirectional gradients were only seen under particular circumstances; both the number of 
fishers and the median of η decreased when Svar increased over 0.5, and appeared insensitive to 
changes in PED.  
 
Bidirectional gradients 

At maximum Svar and PED (i.e., top-left corner), Fish biomass was minimal, the median of ρ 
was maximal, and, the variability (IQR), median and sum of investments were maximal. The 
median and sum of accumulated profits were minimal. 
At minimum Svar and maximum PED (i.e., bottom-left corner), the number of fishers and the 

median of η were maximal. 
At minimum Svar and PED (i.e., bottom-right corner), the sum of accumulated profits was 
maximal. 
 

 
Complex gradients 

The variability (IQR) and median of accumulated profits displayed dome-shaped responses. 
These key metrics reached their maxima at minimum PED and for a Svar value at ca. 0.6. Albeit 

noisy, the response of the median ρ appeared mostly concave and reached a minimum at 
Svar=0.4. 
 
In addition to the three broad classes of key metrics responses, it is worth noting that in some 
cases, there appeared to be a threshold – at Svar≈0.5 – across which responses changed. For 
instance, for values of Svar<0.5, PED had a limited impact on investments, and consequently on 
the fish biomass. Conversely, for values of Svar>0.5, PED had a limited effect on the number of 
fishers and their η. 
 

Four quadrants of market and environmental variability 

 
Although not all key metrics’ responses could be divided in four quadrants in the Svar-PED 
space, this subdivision is helpful to interpret the results of this analysis, while considering Svar 

and PED as proxies of environmental and market variability, respectively.  
 
From a resource and employment perspective, the ideal fishery would be characterized by long 
term stability in both fishing success and markets (i.e., bottom-left quadrant, low Svar and high 

PED). Under such conditions, both the fish biomass and the number of fishers are the highest, 
while intermediate levels of fleet-wide profits (sum of accumulated profits) are generated. 
Weakly risk-seeking fishers (η is negative, but close to zero) enjoy stable revenues within a 
homogeneous fleet of small vessels with intermediate and negative opportunity costs (i.e., 



  

 

  

 

individuals that like and/or need to go fishing) applying a low fishing pressure. Low investment 
levels are a response to low prices brought by the large number of fishermen who enter the 
fishery simultaneously, hence resulting in lower individual profits.  
 
Departing from the stable environment, stable market scenario, an alternative, slightly more 
profitable state can be found at low Svar and low PED (i.e., bottom-right quadrant). Fish 
biomass remains relatively high while a few risk-averse individuals with intermediate levels of 

opportunity cost leave the fishery due to the higher variability in profits (caused by the more 
variable prices). The fleet remains homogeneous and composed of small vessels but is more 
profitable thanks to the higher prices reached at low landings. 
 

Surprisingly, the highest levels of resource depletion were found in the quadrant with high 
fishing success variability and high market stability (top-left quadrant). Under such conditions 
fish biomass reached its minimum, and, the number of fishers was low at high Svar irrespective 
of PED. The latter indicated the dominating effect of Svar over PED in entry/exit decisions 

under high Svar conditions, as confirmed by the concurrent low η values (i.e., fishers become so 
risk-seeking that changes in PED do not affect their exit decisions). Median opportunity costs are 
higher for fishers in this quadrant because fishers are highly risk-seeking, making fishing in a 
variable environment more appealing and thus reducing the tradeoff between fishing and 

alternative income sources. The high prices reached at high landings under high PED (see also 
Fig. S1c) combined with the risk-seeking behavior stimulated the largest investments from 
fishers. The resulting small and heterogeneous fleet of larger vessels applied a high fishing 
pressure but did not generate higher profits due to the higher operational costs incurred by larger 
vessels. The highest landings, reached at maximum Svar, stabilized profits (lower IQR of profits) 
due to the flattening of the price curve (see also supplement S3). This compensation of 
environmental variability by market stability was diminished as PED decreased due to the 
resulting increased slope of the price curve (see also Fig. S1c). 
 

High environmental and market variability (top-right quadrant) did not result in the lowest fish 
biomass, nor the lowest profits. When compared to the previous quadrant, investments were 
lower due to the steeper decrease of prices with increased landings. The fleet was as small and as 
risk-seeking but more homogenous, with intermediate sized vessels and intermediate levels of 

opportunity cost. Again, the effect of large investments at maximum Svar (causing a stabilization 
and lowering of prices) resulted in lower and less variable profits than at lower Svar. Because of 
the variability in prices brought by a lower PED, this quadrant hosted the maximum variability in 
profits. The maximum median profit was also found in this quadrant thanks to the intermediate 

level of investments (i.e., moderate costs) and the lower competition due to the departure of more 
risk-averse individuals (enabling high prices due to relatively lower total landings).  
 

 



  

 

  

 

The impact of variability on decision-making 

 
Because our model incorporated measures of profit variability in the decision-making criteria of 
individuals, as well as the impact of the overall fleet’s characteristics (through the effect of total 
daily landings on price), predicted responses to changes in environmental (Svar) and market 
variability (PED) were found to be complex and interactive. Overall, the results suggested that 
increasing environmental variability resulted in more investments from fewer but more risk-

seeking individuals, which had detrimental effects on both the fish biomass and the overall 
wealth of the fishing community. At maximum environmental variability, the fleet was 
dominated by a few risk-seeking individuals investing at unreasonably high levels, resulting in 
high fishing mortality while diminishing profits. Somewhat unexpectedly, market stability 

amplified those negative impacts by enabling high prices at high levels of landing, leading to 
increased investment and fishing pressure. On the other hand, increasing market variability 
dissuaded large investments by reducing prices at large landings, which had a beneficial effect 
on both the fish biomass and fishing community. 

 
In addition, our results suggest the existence of a dichotomy in the decision-making process 
between systems of high environmental variability (Svar>0.5) and those of low environmental 
variability (Svar<0.5). Under low environmental variability, changes in PED influenced entry 

and exit behavior (but not investment), while under high environmental variability, changes in 
PED influenced investment behavior (but not entry/exit). That is, in stable environments the 
responsiveness of market price primarily influenced decisions at the extensive margin (i.e., 
whether to participate in the fishery or not), affecting fleet size but not its composition. 
Conversely, in variable environments, the responsiveness of market price largely influenced 
decisions at the intensive margin (i.e., how much to invest), affecting fleet composition but not 
size. This differential response was due to the exiting of risk-averse individuals from fisheries 
characterized by high environmental variability, leaving fewer but more risk-seeking individuals 
whose decision-making was predominantly driven by the variability in profits rather than their 

level. Though risk-preferences were found to be the dominant force differentiating fishery 
outcomes across considered scenarios, it is worth noting that the model was calibrated such that 
approximately 95% of agents would view the level of profits as more important than their 
variance in individual decision-making (see Supplementary Information 1).  

 
 

Discussion 

 

The agent-based model explored here was developed to investigate fisher entry, exit, and 
investment behavior under varying levels of resource and market variability. Our fishery was 
open access and all agents were free to enter, invest and fish. Agents who entered and remained 
in the fishery tended to have low opportunity costs and/or strong preferences for fishing and risk. 
Changes in resource variability and demand elasticity influenced fleet composition as well as 



  

 

  

 

resource use and economic outcomes. These effects were found to be inter-dependent and 
suggest that market structure can alter the effects of changes in resource variability.  

Increases in resource variability were found to produce smaller fleets composed of risk-seeking 
fishers who over-invested, harvested greater amounts of the resource but produced lower profits 
due to increased fishing costs and reduced prices from market flooding. It is important to note 
that this result runs counter to investment strategies typically found to be socially optimal under 
increased variability in fisheries (Charles, 1983; Hannesson, 1993; Poudel et al., 2013; Singh et 
al., 2006). Here, increases in resource variability acted as a selective pressure on agents, limiting 
the participation of those with risk averse preferences and promoting socially sub-optimal 
investments by those with risk seeking preferences. Risk seeking fishing preferences have been 
found for both large-scale commercial (Holland and Sutinen, 2000) and artisanal fishers (Eggert 
and Lokina, 2007); however, risk averse fishing behavior appears to be more common (e.g., 
Bockstael and Opaluch, 1983; Smith and Wilen, 2005). There has been limited investigation of 
the relationship between risk preferences, participation in commercial fisheries, and investment 
in fishing capital (Branch et al., 2006). Eggert and Lokina (2007) did find that risk seeking 
artisanal fishers in Tanzania tended to have more capital-intensive fishing operations, however. 
Recognizing that changes in resource variability may cause changes in the risk preference 
composition of the fleet—as well as subsequent fleet decision making—is an important finding 
of this work. Anticipated increases in fisheries’ variability (Brander, 2010, 2007; Perry et al., 
2010) might therefore be expected to lead to increases in participation by risk-seeking 
individuals or entities and investment decisions motivated, perhaps inefficiently, by profit 
variance.  

Decreases in the price elasticity of demand, which increases the responsiveness of market prices 
to changes in the daily supply of fish, were found to dampen the effects of resource variability. 
That is, greater variability in daily prices resulting from an inelastic demand curve tended to 
dissuade over-investment and increase fleet profits while reducing removals. This response arose 
because an inelastic demand curve sends strong market signals to fishers as large landings can 
flood the market, reducing prices and revenues. Thus, there is a disincentive to invest in 
increased fishing capacity, which is not present in a market with an elastic demand curve. While 
estimates of price elasticity of demand for fish products vary considerably across species and 
regions, demand in many markets has been found to be price elastic (Asche et al., 2005). Further, 
a meta-analysis of demand elasticity estimates for various meat products found fish to be more 
elastic when compared to demand for poultry, pork, and meat composites (Gallet, 2010). 
Continued increases in global seafood trade and market integration may further limit the 
responsiveness of market prices to changes in local supply. Our model suggests such a 
decoupling combined with increased environmental variability could adversely impact both 
fishing communities and fish stocks. 

 
This analysis employed a number of simplifications to reduce model complicatedness (sensu Sun 
et al., 2016; i.e., structural level of detail) and facilitate the interpretation of responses to changes 
in variability. The effects of environmental variability on fishery development were explored by 



  

 

  

 

changing the range of a random and uniformly distributed fishing success parameter. It was 
assumed that fish biomass was never limiting, and across simulations, exploitation rates ranged 
from 16% (under PED=1.0 and Svar=0.0; Fig. 2) to 34% (under PED=1.5 and Svar=1.0; Fig. 2). 
In most fisheries, fishing success is a function of stock abundance and catchability. Incorporating 
such variables into the simulation of fishing success would be a reasonable extension of the 
model presented here and is left for future research. Market variability, meanwhile, was 
investigated by modifying the responsiveness of market price to changes in daily landings, 
assuming exogenous factors did not influence price formation. The potential effects of stochastic 
price shocks (e.g., due to changes in external markets) were therefore not investigated. It might, 
however, be expected that such price stochasticity would reduce the responsiveness of 
investment in a similar manner as would an increase in price elasticity. Finally, while other 
ABMs have incorporated dynamic and adaptive decision-making rules (e.g., to better understand 
the emergence of norms and cooperative behavior; Wilson et al., 2007), our model assumed 
agents held constant opportunity costs and preferences for fishing and risk during simulations. 
Allowing for the evolution of decision-making criteria in response to shifts in environmental or 
market variability is an interesting area for future research and could inform our understanding of 
adaptive capacity within commercial fisheries. 

In our simulations, the influence of management or regulatory controls on fisher behavior was 
not considered. Other studies have explicitly incorporated regulatory processes into fisher ABMs 
to investigate the impacts of management on fleet behavior and fishery outcomes (e.g., Soulié 
and Thébaud, 2006; Little et al., 2009; Bellanger et al., 2018). While that was not the focus of 
this analysis, fisheries management could be introduced into our model by placing constraints on 
catch, investment, fleet size, or through modifications to individual decision-making rules (e.g., 
agents might consider quota price and catch limits in assessing the profitability of fishing under 
an individual transferable quota program). The increasing use of simulation approaches to assess 
fishery management alternatives (e.g., management strategy evaluation, Punt et al., 2016), 
coupled with the recognition that human behavior is a key source of uncertainty in fisheries 
(Fulton et al., 2011), suggests a growing need for ABMs in fisheries management. 
Parameterizing and initializing empirical ABMs can be challenging and data-intensive however 
(Smajgl et al., 2011), and thus improved data collection is necessary prior to operationalizing 
ABMs in many fishery management settings.  

 

Conclusion 

Fisheries are complex socio-ecological systems with many feedbacks, linkages, and couplings 
between biophysical, ecological, and human components (Garcia and Charles, 2008). By 
exploring the combined effects of environmental and market variability on the development of a 
simulated fishery, this analysis found that responses to changes in environmental variability were 
dependent upon the sensitivity of market prices to changes in daily landings. Model development 
and parameterization employed several simplifying assumptions, though key system dynamics 
were arguably accounted for. While the prospect of increasing variability in commercial fisheries 
is now well known and generally accepted (Brander 2007, 2010; Perry et al. 2010), the possible 



  

 

  

 

effects of such changes have not, to our knowledge, been viewed in the context of market 
structure. Our findings indicate market structure is critical in modulating the response of human 
communities to these changes and suggest the need for its inclusion when assessing the impacts 
of, and potential responses to, variability in fisheries.   

 
 

 

Tables 

 
Table 1. Parameters used in each model component (Fish stock, Individuals and Market). 
Equation numbers refer to those given in the main text. Values are given for the base simulation, 

as determined during calibration (see Supplementary Information 1). 
 

 

 

 

Figures 

 
Figure 1. Schematic of the daily computations occurring in each model component (Fish stock, 

Individuals and Market). Equation numbers refer to those given in the main text and scale 
symbols correspond to decision-making events. 
 
Figure 2. Response of key metrics to concurrent changes in environmental (Svar) and market 

(PED) variability. 
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Supplementary information 1 – Model calibration 

 
 
Fig. S1: Individual profits, profits margins and price curves as computed in the average 
simulation (see text for details) under three different values of Price Elasticity of Demand 
(colors). Vertical lines indicate the midpoint of the average simulation.  
Due to the paucity of available information for the calibration of the model, a set of reasonable 

assumptions were made to determine realistic values for its parameters. A theoretical average 
simulation was considered, to constrain calibrated values within reasonable bounds, in which 
50% of individuals (n=50), all indifferent to risk (η=0) and to outside opportunities (ρ=0), and 
with a fishing success of 0.5 (eq. 5), would join the fishery and invest every other year. A set of 

values at the start (denoted Xstart) and at the midpoint (denoted Xmid, the end of the 8th year of a 
15-year period) were calibrated. 
Assuming the smallest vessel a first-time fisher may invest in has a capacity of 1 ton 
(VCstart=1,000 kg) and the largest vessel has a capacity of 20 tons (VCmax=20,000 kg), the 

capacity of a vessel at the midpoint (after investing every other year, up to the 8th year) would be: 
 

 !lTm =  !�LefL + dn�-oEdnp�-X�
q = 5,750 tu  (S1-1) 

 
Following these assumptions, total daily landings for this average fleet (50 individuals with a 0.5 
fishing success) would be, at the start of the simulation: 
 

vw�LefL = 50 × 0.5 ×  !�LefL = 25,000 tu   (S1-2) 
 
And at the midpoint of the simulation (PTL, Potential Total Landings; eq. 6): 
 
*vw = 50 × 0.5 ×  !lTm = 143,750 tu   (S1-3) 

 
Fish price is assumed to be at maximum 10$/kg (Pmax=10) and to reach 5$/kg at the midpoint of 
the simulation (Pmid=5; eq.6). 
 
The cost rate of fishing is assumed as 50% of gains (eq. 7): 
 

!I = 0.5       (S1-4) 

 

And the basic cost rate is determined as to reach 30% profit margins at the mid-point of the 
simulation while assuming the maintenance cost as being the triple of the basic cost (Cm=3Cb; 
eq. 7), where: 
 



  

 

  

 

neL{W���×C���
n|×neL{W���×C����(n}�nl)×dn���

= 1.3   (S1-5) 

 
,which simplifies to (see eq.5): 
 
 

!J = �~{{,��×C���
q × @ �

�.� − !ID = 0.168   (S1-6) 

 
, and, 
 
!< = 3 × !J = 0.504     (S1-7) 

 
Given the equation of price (eq. 6) and assuming a PED of 1, the starting fish price is: 
 

*�LefL = min (*le�, *lTm × @ABp�-X�
CAB D

@ P
����D

) = 10 $/kg (S1-8) 

 
According to the decision rules set for investment (Eqs. 14-15), investment costs (Inv, eq. 1) may 
be computed as a function of discounted expected first-time average profits (πstart) such that the 

average fisher (i.e., η=0, ρ=0) is indifferent in their decision to enter the fishery as: 
 
Op�-X�

�.�� = ���       (S1-9) 

 
Or, when combined with equation 7: 
 

��� = neL{Wp�-X�×Cp�-X�×(�En|)E(n}�nl)×dnp�-X�
�.�� = 36,560$ (S1-10) 

 
Given the assumed maximum vessel carrying capacity (VCmax) the slope parameter in the 
formulation of vessel carrying capacity (VCsl, Eq. 3) is (where Ny=15 is the number of years 
simulated): 
 

 !�# = dn�-oEdnp�-X�
	
�∗(��E�) = 0.037    (S1-11) 

 
, and the intercept is: 
 

 !$�% =  !�LefL −  !�# × ��� = −352.72 tu  (S1-12) 

 
In order to calibrate η, minimum, average and maximum profits are computed (at the midpoint of 
the simulation) as a function of fishing success (0, 0.5 and 1 respectively). Minimum profits are: 



  

 

  

 

 
HlT
 = −(!J + !<) ×  !lTm = −3,864$   (S1-13) 

 
, maximum total daily landings are (for 50 fishers): 
 

vwle� = 50 × 1 ×  !lTm = 287,500tu   (S1-14) 

 
, resulting in a price of (as PED=1): 
 

*ABle� = *lTm × (AB�-o
CAB )(� ECF�⁄ ) = 2.5$/tu  (S1-15) 

 
, and profits of: 
 
HABle� = 1 ×  !lTm × *ABle� × (1 − !I) − (!J + !<) ×  !lTm = 3,323.5$ (S1-16) 

 
Similarly, average profits are: 
 

He�� = 0.5 ×  !lTm × *lTm × (1 − !I) − (!J + !<) ×  !lTm = 3,323.5$ (S1-17) 

 

In the model, η values are randomly generated from a normal distribution with zero mean and a 
standard deviation of: 
 

�,Le = 0.5 × O-��
�ef(�(O���,O���-o)) = 3.86 ∙ 10Eq  (S1-18) 

 
Where the denominator denotes the variance of numbers randomly generated from a uniform 

distribution bound between HlT
 and HABle�. The formulation for the standard deviation of η 

was used to allow a range of responses to profit variability (positive and negative) while also 
ensuring that the majority of agents (~95%) weighed profits more heavily than profit variance in 
their decision making. Approximately 95% of the density of a normal distribution is contained 
within a range of plus or minus two standard deviations from the mean. Thus, the standard 
deviation of η was scaled to one half times the ratio of average profits to the maximum 
anticipated profit variance.  
Finally, ρ was calibrated such that, with an expectation of zero profits, the average risk neutral 
individual would be indifferent to entering the fishery (i.e., both sides of inequality 15 are equal), 
therefore the mean ρ is: 
 

)̅ = −0.05 × ��� = −1,828$    (S1-19) 

 
, and its standard deviation is: 



  

 

  

 

 

�j = |)̅| = 1,828$      (S1-20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 



  

 

  

 

Supplementary information 2 – Sensitivity analysis 

 
 
Fig. S2.1: Model response to a sensitivity analysis through parameter perturbation. Each 
parameter (x axis) was changed by +20% (grey bars) and -20% (black bars) and the response of 
each key metric (y axis), relative (given in percentages) to the base simulation is shown as bar 
heights. Responses falling within the dotted lines (derived from ‘No_Change’ simulations, where 

parameters have not been changed) may be considered as noise and ignored. 
 
Fig. S2.2: Effects of the change in selected parameters on profits over time in the theoretical 
average simulation (see Supplement 1 for description). 

 
 
The value of each parameter was changed by +20% and -20% sequentially while keeping other 
parameter values unchanged, each in 1,000 model runs. The mean response of key metrics (e.g., 

sum of investments) was computed and their change, relative to the mean base response (from 
1,000 model runs with the parameter values given in Table 1 in the main text), was investigated. 
Key metrics were computed for individuals that were fishers at the end of simulations. Two 
additional sets of 1,000 simulation runs were executed with unchanged parameter values 

(denoted as ‘No_Change’ in Fig. S2.1), to establish a baseline response to all the sources of 
stochasticity in the model. With an infinite number of simulation runs, ‘No_Change’ values 
would be null, however due to time restrictions 1,000 runs were executed and any change in key 
metrics with an amplitude similar to that of ‘No_Change’ (shown as doted lines in Fig. S2.1) 
should be considered as noise. 
 
Initial fish biomass (Fbiomi) 

During simulations, fish biomass was reset every January 1st to a value (Bi, Table 1) enabling 
unlimited harvesting. As such, Bi had a significant effect (i.e., resulting in more than 5% change 

in a key metric) only on fish biomass itself, as expected. 
 
Costs parameters (Cf, Cb, Cm) 

Among costs parameters, fishing costs (Cf) had the greatest effect on key metrics. Increasing Cf 

resulted in a decrease in all key metrics except for the fish biomass, the number of fishers and 
their η. Where significant, the responses of key metrics to changes in basic (Cb) and maintenance 
(Cm) costs were similar but of lesser amplitude.  
Increasing costs resulted in less variable and lower investments and profits. In a hypothetical 

population where half of individuals would invest every other year, increasing Cf by 20% 
resulted in economic losses after the twelfth year, compared to the fifteenth year in the base 
simulation (Fig. S2.2a). Such response was due to the link between costs and vessel size (Eq. 7), 
which in turn inhibited investment towards larger vessels. Since daily catch is bound between 0 



  

 

  

 

and Vessel Capacity (Eq. 5), the fleet of smaller vessels had less variable catch and profits, 
which encouraged more individuals to become fishers. Those individuals were more risk-averse 
(higher η) and had fewer outside opportunities (lower ρ) when compared to the base simulation.  
 
Price parameters (Pmid, PTL, Pmax, PED) 

Given the parameterization of price (Eq. 6), the similar response of key metrics to changes in the 
average price (Pmid) and the potential total landings (PTL) was expected. The response was of 

similar amplitude but in reversed direction when compared to that of changing fishing costs. 
Increasing price, by increasing Pmid or PTL, resulted in a more heterogeneous fleet with fewer, 
more risk-seeking, fishers having larger vessels and accumulated profit.  
 

Changing the maximum fish price (Pmax) had an effect on the number of fishers and their 
profits. Given the fast decrease of price with increasing landings, changing Pmax impacts profits 
only in situations of low landings. Decreasing Pmax resulted in lower profits but also decreased 
their variance by broadening the range of (low) landings at which price remains constant (and 

maximum). Interestingly, both increasing and lowering Pmax tended to slightly stimulate the 
decision to become fisher but did so through two different mechanisms. Increasing Pmax 
stimulated entry by increasing profits while decreasing Pmax did so by stabilizing profits at low 
landings. 

 
Decreasing the Price Elasticity of Demand (PED) broadened the range of potential profit by 
increasing price at low landings and decreasing price at high landings. As such, decreasing PED 
increases the variance in accumulated profit by increasing profits for small vessels relative to 
larger ones (see Fig. S2.2b), consequently favoring lower investments and dissuading individuals 
from entering the fishery. 
 
Fishing season parameters (a, b, c, d) 
Larger profits may be made during a longer fishing season, which can occur if the start of the 

season is earlier (lower b), the end of the season is later (higher d) or if the opening and/or 
closing of the season is faster (higher a and/or c). Key metrics were overall relatively insensitive 
to the speed of opening/closing of the season. Increasing the fishing season duration by lowering 
b or increasing d increased accumulated profit and lowered fish biomass but with differing 

amplitudes. This asymmetry is due to the time-decaying weight put on past profits (and their 
variance) within the decision-making computations (Eq. 11), whereby older profits are less 
important than recent ones. As a result, a fishing season ending later had more of an effect than 
one starting sooner, since it was occurring closer to the time of decision-making (January 1st).  

 
Vessel Carrying capacity parameters (VCint, VCsl) 

The vessel carrying capacity parameters control the linear relationship between investments and 
daily landings (Eqs. 3 and 5). An increase in the intercept (VCint) or the slope (VCsl) of this 



  

 

  

 

relationship results in greater landings but does so differently across levels of investment; 
increasing the VCint increases landings proportionally at any investment level, while increasing 
VCsl increases landings more at high investment levels than at low investment levels. Since costs 
are proportional to vessel carrying capacity, changing VCint only moderately impacts average 
profits while changing VCsl modifies the relationship between profits and investments (see Fig. 
S2.2c and d). Increasing VCint or VCsl both favored smaller vessels by increasing profits at low 
investment levels (Fig. S2.2), which tended to lower median and total investment levels and 

profits and attract more individuals to invest small amounts and become fishers; a response 
similar to that observed when fishing costs were increased. 
 
Fishing success variability (Svar) 

Success variability (Svar) adds stochasticity to daily individual landings. It must be noted that 
the responses shown in this section are for a small range of Svar values (0.4 to 0.6) and a PED of 
one. An analysis of the effect of a broader range of Svar value under different PED values is 
given in the main text (and in Fig. 2). Increasing Svar logically increased the variance in 

investments and accumulated profit (higher IQRs) which stimulated fewer, but more risk-seeking 
individuals (lower η) to invest and become fishers. The resulting smaller fleet of larger vessels 
(i.e., with higher costs) had lower and more variable profits. 
 

Decision-making parameters (ση, )̅, σρ, ωmax, Ddep, TDr, Inv) 

An individual with a higher η is more risk-averse and negatively reacts to variability in profits. 
An individual with high ρ has other potential sources of income and negatively reacts to low 
profits. Given that ρ and η values are assigned randomly to individuals at the start of a 
simulation, an individual may be characterized by a high η and a low ρ (risk-averse and 
indifferent to low profits), a low η and a high ρ (risk-seeking and high opportunity costs), or any 
other combination. η and ρ values are randomly generated from normal distributions with means 
of 0 and )̅ and standard deviations of ση and σρ respectively.  
 

Increasing ση increased heterogeneity in risk preferences within the population and led to fewer, 
but more risk-seeking fishers (lower median η) with more variable investments and accumulated 
profit (higher IQRs). Increasing ση had a similar effect on key metrics as increasing Svar, by 
directly generating more risk-seeking individuals (while risk-seeking individuals are stimulated 

by higher Svar). 
 
Increasing )̅ or σρ resulted in more high opportunity cost individuals, leading to fewer individuals 
that were more risk-seeking (lower median η) to invest and become fishers. Fishers had more 

variable investment levels and accumulated profits. 
 
ω, the weight that an individual puts on other’s profits is randomly generated for each individual 
from a uniform distribution bound between 0 and ωmax. As such, decreasing ωmax resulted in 



  

 

  

 

individuals being less affected by other’s economic outputs when making decisions. Changing 
ωmax significantly impacted only a few metrics. In particular, decreasing ωmax resulted in fewer 
individuals becoming fishers and overall more risk-seeking individuals. By decreasing ωmax, 
each individual focused more on their own profits, which were more variable than the fleet’s 
profits (variability is dampened by a larger sample size) hence resulting in fewer but more risk-
seeking individuals becoming fishers. 
 

Ddep controls the rate at which investments depreciate and is involved in the decision to exit the 
fishery (Eqs. 2 and 16). Decreasing Ddep increased the rate of depreciation rendering the 
decision to exit more likely. As a result, fewer individuals were fishers at the end of 15-year 
simulations, they were slightly more risk-seeking, and they had more variable investments and 

profits. 
 
As part of the decision-making process, individuals put less weight on older profits than recent 
ones (Eq. 11). TDr controls the rate at which past profits are discounted, and, increasing TDr 

resulted in recent profits being more impactful than past ones in the decision-making process. 
Increasing TDr resulted in more individuals becoming fishers due to the resulting perception of 
more stable historical profits (by putting less weight on past year’s entries/exits/investments). 
 

Inv, the cost of investment (eq. 1), corresponds to the increment by which an individual’s 
investments are increased each time that individual decides to invest. Given the relationship 
between investments and vessel carrying capacity, changing Inv or VCsl by the same proportion 
had the same effect on average profits (see Fig. S2.2d and e). The effect of changing Inv on key 
metrics was however different than the effect of changing VCsl because Inv is directly involved 
in the decisions to enter the fishery and to invest (see Eq. 15), as particularly seen in the differing 
response of the number of individuals becoming fishers.  
 
Increasing Inv dissuaded some risk-averse individuals from becoming fishers. The resulting 

smaller and more homogeneous fleet had slightly more variable profits due to the risk-seeking 
behavior of its participants. 
 
Decreasing Inv stimulated individuals to become fishers. The resulting larger and more 

heterogeneous fleet had more variable profits and investments and was consequently slightly 
more risk-seeking. 

 

 

 

 

 

 



  

 

  

 

Supplementary information 3 – Effects of changes in Svar, PED, ωmax. 
 
 
See FigS3_PSO-Analysis.tiff 
Fig. S3: Mean (black line) and standard deviation (grey area) response of key metrics to changes 
in Svar (left column), PED (middle column) and ωmax (right column). 
 

 
The response of key metrics (e.g., median of investments) to changes in fishing success 
variability (Svar), price elasticity of demand (PED) and omega variability (ωmax) was 
investigated. To do so, two parameters were held constant (e.g., PED=1.0 and ωmax=0.5) while 

the remaining parameter was incrementally changed within a range of values (e.g., 
0.0≤Svar≤1.0), and each combination of values was used in 1,000 simulations. The mean (and 
standard deviation) of key metrics was then computed for individuals that were fishers at the end 
of simulations.  

 

Fishing success variability 

 

Fishing success variability (Svar) values ranging from 0.0 to 1.0 were tested for PED=1.0 and 

ωmax=0.5 (Fig. S3, left column). Increasing Svar results in an increased variability in daily 
individual catch (Eq. 5) and therefore profits (Eq. 7). 
 
At low levels of success variability (0.0≤Svar≤0.2), all key metrics were relatively insensitive to 
changes in Svar. At higher levels, increasing Svar caused a reduction in the number of fishers 
and their η, hence indicating the exiting of risk-averse individuals from the fishery. At maximum 
Svar fishers were also characterized by higher outside opportunities (higher ρ) indicating a 
weaker preference for fishing. Although counter-intuitive, this slight increase in ρ suggests that 
at very high Svar, the strong increase in η offsets the increase in ρ (i.e., fishers who might have 

exited at lower Svar levels were now characterized by stronger preferences for risk and were thus 
less likely to exit the fishery). With increasing Svar, fishers tended to invest more, and their 
investments tended to be more variable. The increase in the variability of investments stems from 
the increasing importance of risk preference in investment decisions: risk-seeking individuals 

were increasingly likely to invest and remain in the fishery while risk-averse individuals were 
increasingly likely to forgo investment and exit the fishery. Median profits appeared to reach an 
optimum at a Svar of around 0.5. This optimum resulted from the combined optimum number of 
fishers and their investment levels; at lower Svar, the greater number of fishers resulted in larger 

landings and therefore lowered price, while at higher Svar, the larger investment levels resulted 
in higher costs. 
 



  

 

  

 

Overall, increasing Svar led to a shrinking pool of ever-investing risk-seeking fishers. The 
resulting small and heterogeneous fleet of large vessels did not generate more profits on average 
due to the higher costs incurred by larger vessels, while causing a large reduction in fish 
biomass.  
 
The response of the variability in accumulated profits pointed to a compensating mechanism: 
larger investments at higher Svar (>0.6) resulted in larger landings for which prices were more 

stable due to the flattening of the price curve at high landings. The effect of success variability 
on profit variability was therefore compensated by price stability at high landings levels.  
 

Price elasticity of demand 

 

Price elasticity of demand (PED) values ranging from 1.5 to 0.5 (elastic to inelastic) were tested 
for Svar=0.5 and ωmax=0.5 (Fig. S3, middle column). Decreasing PED results in a wider range of 
fish price across daily landings (Eq. 6, Fig. S1c). 

 
The average response of key metrics to changes in PED were subtler than in the case of Svar. 
The number of fishers and their η slightly decreased with decreasing PED. Median investments 
slowly decreased while their variability slightly increased with decreasing PED. The most 

noticeable response was from profits, where all metrics (median, sum and IQR) increased with 
decreasing PED. 
 
By increasing the range of prices across levels of landings, decreasing PED results in more 
variable profits. In addition, decreasing PED penalizes large investments (by reducing prices and 
thus revenues while costs remain proportional to investments; see Fig. S1a). Decreasing PED 
hence resulted in a slightly smaller (though more heterogeneous) fleet of slightly smaller vessels 
with slightly more risk-seeking captains catching slightly less fish. The higher prices reached at 
lower landings promoted higher – albeit more variable – levels of profits. 

 
Both increases in success variability and decreases in price elasticity led to a smaller fleet whose 
captains were more risk-seeking. Interestingly, increases in success variability increased 
investments – and therefore costs – rendering the fleet less profitable. Conversely, decreases in 

price elasticity did not lead to increased investment, and fleet profitability increased. These 
opposing findings suggest that variability operating at the individual level (success variability) 
may lead to different industry outcomes when compared to that operating at more aggregate 
levels (price elasticity). Specifically, increases in success variability led to increases in revenue 

variability across the fleet on a given day, while decreases in price elasticity led to increases in 
revenue variability for a given vessel across days. In our model, risk-seeking individuals are 
incentivized to invest when profits across the fleet become more variable, thus increases in 
success variability led to a direct response in investment by risk-seeking individuals, as well as 



  

 

  

 

exit from the fishery by risk-averse individuals. Decreasing price elasticity did not increase intra-
day profit variability directly as all vessels received the same daily market price. The resulting 
limited exit of risk-averse individuals from the fishery under decreasing price elasticity was 
therefore a response to the slight increase in the variability of investments, which produced a 
slightly more heterogenous fleet having slightly more variable intra-day profits.  
 
 

Omega variability 

 

Changes in ω (randomly generated from a uniform distribution bound between 0 and ωmax) 
variability, with ωmax values ranging from 0.0 to 1.0 were tested for Svar=0.5 and PED=1.0 (Fig. 

S3, right column). Increasing ωmax results in individuals putting more weight on other 
individual’s economic outputs (the average and variance of profits) during decision-making (Eqs. 
8 and 9). 
The response of key metrics to changes in ωmax highlighted a dichotomy in the decision-making 

process between situations where ωmax is null (i.e., no knowledge of other’s economic output) 
and situations where ωmax is not (i.e., any level of knowledge of other’s economic output). 
 
When ωmax is null, ω is null and an individual’s decisions are based on his/her own average 

profits with a null daily variance. The absence of variance in profits was attractive to a small 
pool of ‘risk-indifferent’ (median η=0) individuals whose decisions were driven by the need for a 
source of income (low ρ; low outside opportunities and/or strong preference for fishing). This 
particular subset of individuals behaved relatively consistently (low variability in investments) 
and generated high profits thanks to the higher prices obtained from lower landings by a smaller 
fleet. The variability in price stemming from low landings resulted in highly variable profits. 
 
The response of key metrics to an increase in ωmax was more pronounced at low values 
(0.0<ωmax≤0.2). At the lowest non-null ωmax, fishers were particularly risk-seeking due to the 

spurious perception of profit variability caused by the large difference between the weight put on 
personal economic output (always set to one) and the weight put on other’s economic outputs 
(close to zero). In other words, having a very limited knowledge of everyone else’s economic 
output – a somewhat unrealistic position to be in – gives the false impression of a highly variable 

income source whenever that output differs from your own. Low ωmax values therefore favored 
fewer but more risk-seeking individuals who had more variable investment levels and profits. 
Risk-seeking individuals tend to invest more, resulting in lower profits due to the higher costs 
incurred by larger vessels. With ωmax increasing at higher values (�le� > 0.2) the better 

knowledge of other’s economic outputs dampened the perception of income variance and 
stimulated more risk-averse individuals to join the fishery. Under such conditions, more 

individuals became fishers, who had less variable levels of investments and profits, as well as 
slightly lower investments and higher profits. 
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Figure 2

 

 

 

 

 

 

 

 

 

 

 



Figure S1 

 

 



Figure S2.1 

 

 

 

 

 

 

 

 

 

 

 



Figure S2.2 

 

 



Figure S3 

 



Model 
component Parameter Description Value Equation 

Fish stock 

Bi Initial fish biomass (replenished every January 1st) 100,000 t - 

Individuals 

Svar Fishing success variability 0.5 5 

Cb Basic costs rate 0.168 7 

Cm Cost rate of maintenance 0.504 7 

Cf Cost rate of fishing 0.5 7 

VCsl Slope of the relationship between vessel capacity and investments 0.037 3 

VCint Intercept of the relationship between vessel capacity and investments -352.72 3 

ωmax Upper bound of ω 0.5 - 

a Probability of leaving port parameter (starting slope) 0.2 4 

b Probability of leaving port parameter (starting time) 100 4 

c Probability of leaving port parameter (ending slope) 0.2 4 

d Probability of leaving port parameter (ending time) 240 4 

�̅ Mean response to variance in expected profits 0 - 

ση Standard deviation of the response to variance in expected profits 3.86·10-4 - 

�̅ Mean opportunity costs / preference toward fishing -1,828 $ - 

σρ Standard deviation of opportunity costs / preference toward fishing 1,828 $ - 

Market 

Inv Investment costs $36,560  1 

PED Price Elasticity of Demand 1.0 6 

Pmax Maximum price of fish 10 $/kg 6 

Pmid Mean price of fish 5 $/kg 6 

PTL Potential Total Landings 143,750 kg 6 

Ddep Depreciation parameter (duration) 360 days 2 

TDr Decay rate of the weight put on past economic outcomes 0.005 11 

 




